Search results for "Warm–hot intergalactic medium"

showing 2 items of 2 documents

EDGE: explorer of diffuse emission and gamma-ray burst explosions

2009

How structures on various scales formed and evolved from the early Universe up to present time is a fundamental question of astrophysical cosmology. EDGE will trace the cosmic history of the baryons from the early generations of massive star by Gamma-Ray Burst (GRB) explosions, through the period of cluster formation, down to very low redshifts, when between a third and one half of the baryons are expected to reside in cosmic filaments undergoing gravitational collapse by dark matter (Warm Hot Intragalactic Medium: WHIM). In addition EDGE, with its unprecedented observational capabilities, will provide key results on several other topics. The science is feasible with a medium class mission …

Vision[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Warm–hot intergalactic mediumAstrophysicsAstrophysics7. Clean energy01 natural sciencesCosmologySettore FIS/05 - Astronomia E AstrofisicaIntergalactic MediumWarm-Hot Intergalactic MediumX-rays Cosmology Clusters Gamma-ray bursts Warm-hot intergalactic medium Missions010303 astronomy & astrophysicsX-ray telescopesX-rays; Cosmology; Clusters; Gamma-ray bursts; Warm– hot intergalactic medium; MissionsPhysicsEquipment and servicesSatellite MissionSpectrometersAstrophysics (astro-ph)X-rays Cosmology Clusters Gamma-ray bursts Warm– hot intergalactic medium MissionsTemperatureAstrophysics::Instrumentation and Methods for AstrophysicsCosmologyGamma-ray burstsCosmic VisionSpectral resolutionGalaxy ClustersAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesWarm&ndashAstrophysics::Cosmology and Extragalactic AstrophysicsMissionshot intergalactic mediumAbsorptionNO010309 opticsX-rayClustersWarm–hot intergalactic mediumGalaxy groups and clusters0103 physical sciencesX-raysGalaxy groups and clustersImaging systems010306 general physicsGamma-ray burstWarm&ndashGalaxy clusterSpatial resolutionSensorsAstronomyX-rays clusters Gamma-Ray Bursts Warm-Hot Intergalactic Medium missionsAstronomy and AstrophysicsGalaxyRedshiftCluster13. Climate actionSpace and Planetary ScienceGamma-ray burstOptics for EUV, X-Ray, and Gamma-Ray Astronomy III. Edited by O'Dell, Stephen L.; Pareschi, Giovanni. Proceedings of the SPIE
researchProduct

The Cryogenic AntiCoincidence detector for ATHENA: the progress towards the final pixel design

2014

“The Hot and Energetic Universe” is the scientific theme approved by the ESA SPC for a Large mission to be flown in the next ESA slot (2028th) timeframe. ATHENA is a space mission proposal tailored on this scientific theme. It will be the first X-ray mission able to perform the so-called “Integral field spectroscopy”, by coupling a high-resolution spectrometer, the X-ray Integral Field Unit (X-IFU), to a high performance optics so providing detailed images of its field of view (5’ in diameter) with an angular resolution of 5” and fine energy-spectra (2.5eV@E<7keV). The X-IFU is a kilo-pixel array based on TES (Transition Edge Sensor) microcalorimeters providing high resolution spectroscopy …

SimulationsSiliconWarm–hot intergalactic mediumField of viewOrbital mechanicsOpticsField spectroscopyGalactic astronomyX-raysElectronicAngular resolutionOptical and Magnetic MaterialsElectrical and Electronic EngineeringAnticoincidenceImage resolutionSpectroscopyPhysicsSpatial resolutionEquipment and servicesSpectrometerSpectrometersbusiness.industrySensorsApplied MathematicsDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicsATHENAAnticoincidence; ATHENA; Cryogenic detectors; TES; Electronic Optical and Magnetic Materials; Condensed Matter Physics; Computer Science Applications1707 Computer Vision and Pattern Recognition; Applied Mathematics; Electrical and Electronic EngineeringCryogenic detectorsTransition edge sensorbusinessTES
researchProduct